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Abstract 

Estimation of traffic state parameters is crucial in advanced traffic management systems. However, 

measuring these parameters in the field is not practical since they are categorized as spatiotemporal 

parameters. This report presents three estimation approaches to estimate the traffic volume existing on 

signalized links. The first approach includes three model-driven approaches (Kalman filter [KF], adaptive 

KF [AKF], and particle filter [PF]) using a single average level of market penetration (ρ) in the state-

space equations based on connected vehicle (CV) data only. The second approach develops an artificial 

neural network (ANN) approach to estimate two ρ variables; ρin and ρout, to be used in the state-space 

equations. Fused CV and camera data are utilized to build the ANN approach. After that, the second 

approach integrates the ANN with the KF approach (KFNN approach) to estimate the traffic volume on 

signalized links. The third approach develops three data-driven approaches (ANN, k-nearest neighbor, 

and RF) to estimate the traffic volumes using only CV data to build the data-driven approaches. The three 

approaches were applied on a signalized intersection in downtown Blacksburg, VA. The results showed 

that the use of CV data only is sufficient to provide accurate traffic volume estimates. In addition, using 

two predicted variable values in the state-space equations is not recommended, as it may produce 

undesired large errors in the state equation. It was found that the ANN approach may over-estimate the 

first variable and under-estimate the second variable or vice versa for the same estimation step. 

Consequently, the second research approach is not recommended. Finally, the ANN is the most accurate 

estimation approach. However, taking into consideration the huge amount of data needed to train and 

build the ANN approach, the long computational time needed to build the ANN, and the constraints on 

keeping the traffic behavior the same as the behavior in the training data set, the use of the KF approach is 

highly recommended for the application of traffic state estimation due to its simplicity and applicability in 

the field.  
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1. Introduction 

In the U.S., people wasted around 166 billion hours in traffic congestion in 2017, which led to a waste of  

around 3.8 billion gallons of fuel. Traffic engineers and researchers are making efforts to provide solutions 

for the traffic congestion problem. One efficient solution is to deploy Intelligent Transportation System 

(ITS) applications with the aim of increasing the capacity of the existing traffic infrastructure (Wang 2010). 

One such ITS application is the use of connected vehicle (CV) technology, which can allow the exchange 

of information between two CVs (vehicle-to-vehicle communication) and also the exchange of information 

between any CV and the traffic infrastructure (vehicle-to-infrastructure communication). In the case of 

traffic congestion, traffic infrastructure, such as a traffic signal controller, can send early messages to the 

surrounding CVs to find alternative routes, leading to a reduction in travel time. 

Traffic congestion can be represented by the macroscopic traffic stream density (the number of vehicles 

that traverse a specific traffic segment divided by the length of that segment). Traffic density is considered 

a spatial rather than a temporal measurement. Consequently, the temporal traffic occupancy measurements, 

obtained from loop detectors, cannot be used to estimate the traffic density for the entire link unless multiple 

loop detectors are installed. However, this results in high installation costs. A more efficient way to estimate 

the traffic density is to exploit the main advantage of CV technology, which is its ability to share real-time 

information, such as the vehicle’s location and speed, anywhere inside the link. 

To estimate the number of vehicles in a link, researchers have developed different estimation approaches, 

such as model-driven approaches (filtering techniques) and data-driven approaches (machine learning). In 

addition, different data sources have been used to implement the proposed estimation approaches, such as 

data from fixed sensors (e.g., loop detectors), data from two different detection sources (fusion data), and 

CV data. 

1.1. Model-Driven Estimation Approaches 

For the use of fixed sensors, the input-output approach has been widely used to develop model-driven 

approaches. One study developed a Kalman filter (KF) approach to estimate the vehicle counts in a 

signalized link using at least three loop detectors—two at the boundaries of the tested link and the third one 

in the middle of the link (Vigos, Papageorgiou, and Wang 2008). Another study (Ghosh and Knapp 1978) 

employed data from four loop detectors to estimate the number of vehicles, resulting in accurate estimates. 

Traffic flow and occupancy data, measured from six loop detectors, were utilized to provide accurate 

estimates for the vehicle counts in an on-ramp segment (Bhouri et al. 1989). However, these studies require 

a high implementation cost for installing multiple fixed sensors. Moreover, it was found that fixed sensors 

always produce some noise in their data, requiring the use of additional data sources to reduce that noise 

(Mimbela and Klein 2007). 

Fusion data has gained more attention following the introduction of advanced technologies such as CV 

technology. Recently, researchers have started using fixed sensors together with CV data for finding better 

estimation accuracy. One such study attempted to provide accurate estimates of traffic density using mobile 

sensors and loop detector data (Herrera and Bayen 2007), showing that estimation accuracy using fusion 

data outperformed estimation using loop detector data. A recent study utilized CVs and cameras to estimate 

traffic density in a 500 m highway segment. The model’s development was based on the assumption that 

the average CV speed is approximately equal to the average speed of traditional vehicles (Bekiaris-Liberis, 
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Roncoli, and Papageorgiou 2016). In that study, a KF model was developed under the consideration of 

having a linear parameter-varying system with known parameters. The state equation was based on the 

traffic flow continuity equation, while the measurement equation was based on the average speed of CVs. 

Wright and Horowitz (2016) developed a particle filter (PF) using fusion loop and CV measurements to 

estimate the number of vehicles in a freeway section, demonstrating that the use of fusion data resulted in 

improved estimation accuracy. Another study (Di, Liu, and Davis 2010) developed a KF approach using 

fused loop and CV data to estimate the number of vehicles in a signalized link. 

Recently, a few studies have attempted to estimate the number of vehicles in signalized links using CV data 

only. In those studies, KF, adaptive KF (AKF), and PF model-driven approaches were developed to provide 

accurate estimates (Aljamal, Abdelghaffar, and Rakha 2020b) (Aljamal, Abdelghaffar, and Rakha 2019a) 

(Aljamal, Abdelghaffar, and Rakha 2019b) (Aljamal, Abdelghaffar, and Rakha 2020a).  

1.2. Data-Driven Approaches 

Machine learning techniques have always required a large amount of data to build mathematical models 

that draw the relationship between the model’s inputs and outputs, and as such, machine learning is 

considered a data-driven technique. Data-driven approaches have been employed to estimate traffic state 

variables such as traffic density and speed (Aljamal, Abdelghaffar, and Rakha 2019a) (Fulari, Vanajakshi, 

and Subramanian 2017) (Antoniou and Koutsopoulos 2006) (Wassantachat et al. 2009) (Jahangiri, Rakha, 

and Dingus 2015) (Sekuła et al. 2018) (Raj, Bahuleyan, and Vanajakshi 2016). In previous studies, 

proposed estimation approaches have relied on different detection techniques, such as fixed sensors and 

fusion data. 

Artificial neural network (ANN) and k-nearest neighbor (k-NN) data-driven approaches were developed to 

produce reliable estimates for vehicle counts (Raj, Bahuleyan, and Vanajakshi 2016). In that study, authors 

relied on fixed sensors to obtain traffic speed and flow measurements to build and train the ANN and the 

k-NN approaches. Fulari, Vanajakshi, and Subramanian (2017) developed an ANN approach to estimate 

the number of vehicles using video and Bluetooth data. It was found that the ANN approach performed 

well if a good quantity of training data was accessible. Fused loop and CV data were used to develop support 

vector machine and k-NN approaches, with the aim of estimating the level of traffic congestion in a freeway 

segment (Khan, Dey, and Chowdhury 2017). Another study (Sekuła et al. 2018) deployed data from fixed 

sensors and CVs to build different data-driven estimation approaches such as ANN, k-NN, and random 

forest (RF) to estimate hourly traffic volumes. In that study, the ANN approach was found to outperform 

the other approaches. Aljamal, Abdelghaffar, and Rakha (2019a) developed an ANN approach to estimate 

the CV level of market penetration (LMP) rate. In that study, the ANN approach provided the AKF 

approach with real-time values of the LMPs, resulting in an improved vehicle count estimation accuracy. 

The LMP represents the percentage of the CVs in relation to the total number of vehicles. 

In summary, previous studies have shown the benefits of using data-driven approaches in addressing 

different aspects of the traffic state estimation problem. Therefore, the research described in this study aims 

to develop data-driven approaches in the application of traffic stream density estimation (vehicle counts). 

One commonality among the related previous studies is that they all estimated vehicle counts using data 

from fixed sensors or using fused source data (e.g., loop with CV data). 
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The research described in this study aims to develop different data-driven estimation techniques to estimate 

the vehicle counts using only CV data. The proposed estimation approaches are applied to test a signalized 

link in downtown Blacksburg, VA. The proposed research extends the state-of-the-art in vehicle count 

estimation by making three major contributions: 

1. Developing three data-driven estimation approaches to estimate the vehicle counts in signalized 

links. The three data-driven approaches are developed using only CV data. 

2. Developing a data-driven approach to estimate the LMP for CVs at the entrance and exit of the 

link. 

3. Comparing the three proposed data-driven approaches with state-of-the-art model-driven 

estimation approaches. 

2. Development of Simulation Data  

A congested link in downtown Blacksburg, VA was selected to evaluate the proposed estimation 

approaches. The link falls between two traffic signals, as shown in Error! Reference source not found.. 

The link length is 97 meters. INTEGRATION traffic simulation software was used to simulate the network 

in Error! Reference source not found.. The traffic Origin-Destination (O-D) values for the network were 

calibrated using real count data. The speed limit of the tested link is 40 km/h, the speed-at-capacity is 32 

km/h, the jam density is 160 veh/km/ln, and the saturation flow rate is 1800 veh/h/ln. 

 

Figure 0.1: Tested link section in downtown Blacksburg, VA 

2.1. Generation of the Training Dataset 

Training data are needed to develop machine learning estimation approaches. INTEGRATION simulation 

software was used to facilitate the generation of the CV data, as the CV data are not easy to access. In the 

simulation input files, 400 scenarios, combining the O-D values and right turn traffic volumes that exit the 

Main street toward Jackson street, were considered. For the O-Ds and right turn traffic volumes, 20 different 

demand scaling factors generated from a normal distribution, ranging from 0.8 to 1.2, were used—for 

instance, a scenario of an 0.82 O-D demand scaling factor with 1.05 right turn volume demand scaling 

factor. In addition, 25 scenarios with different random seeds were considered for each LMP, resulting in a 

total of 1,000 scenarios (20 × 20 × 25) to build the training data. The INTEGRATION simulation software 

generates an output time-space file that includes real-time information about the CVs, such as each vehicle’s 

location and speed. In section 1.3, more details are provided about the inputs and outputs that were 

considered in the training data set. 
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3. Methodology 

In this section, three research approaches are presented: (1) model-driven approaches, (2) integrated data-

driven and model-driven approaches, and (3) data-driven approaches. In the first research approach, linear 

and nonlinear filtering approaches were used to estimate the vehicle counts. The second approach first 

developed a data-driven approach to estimate the ratio of the number of CVs (NCV) to the total number of 

vehicles (NT), and then combined the data-driven approach with the most accurate model-driven approach 

to finally estimate the vehicle counts. The third approach developed data-driven approaches to directly 

estimate the vehicle counts. 

3.1. First Approach: Model-Driven Approaches 

Linear and nonlinear filtering approaches are presented in this section: (1) KF, (2) AKF, and (3) PF. These 

filtering techniques are always used to solve state-space models. A state-space model is represented by: (1) 

a state, and (2) a measurement system. The filtering techniques are mainly used to provide posterior 

estimates given some measurements, with the aim of minimizing the errors in the priori estimates. 

In this chapter, the state-space model presented in (Aljamal, Abdelghaffar, and Rakha 2020b) is used to 

estimate the vehicle counts. The state and measurement equations are presented in Equations (1.1) and 

(1.3), respectively. 

 

                                          𝑁(𝑡) = 𝑁(𝑡 − Δ𝑡) + 𝑢(𝑡)                                                                            (1.1) 

 

                                           𝑢(𝑡) =
Δ𝑡 [𝑞𝑖𝑛(𝑡)−𝑞𝑜𝑢𝑡(𝑡)]

max(𝜌𝑎𝑐𝑡𝑢𝑎𝑙,𝜌𝑚𝑖𝑛)
                                                                              (1.2) 

 

                                           𝑇𝑇(𝑡) = 𝐻(𝑡) × 𝑁(𝑡)                                                                                  (1.3) 

 

                                          𝐻(𝑡) =
1

�̅�(𝑡)
=

2 ×𝜌𝑎𝑐𝑡𝑢𝑎𝑙

𝑞𝑖𝑛(𝑡)+𝑞𝑜𝑢𝑡(𝑡)
                                                                          (1.4) 

 

where N (t) is the number of vehicles crossing the link at time t, N (t − ∆t) is the number of vehicles crossing 

the link in the preceding time interval, ρ is the CVs’ LMP, defined as the ratio of the CV counts to the total 

vehicle counts. In this research approach, the ρ is computed from historical data and assumed to remain 

constant for the entire simulation. For instance, if a scenario of 10% LMP is evaluated, the ρ value is 

assumed to be 10%. qin and qout represent the flow of CVs entering and exiting the link, respectively, during 

∆t. The ∆t is updated when five CVs have traversed the tested link (Aljamal, Abdelghaffar, and Rakha 

2020b). TT is the average travel time for CVs. The following subsections present three filtering techniques 

to solve the described state-space model. 
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The KF Approach 

The KF is a linear filtering technique and can be implemented using the following equations: 

 

                                                           �̂�−(𝑡) = �̂�+(𝑡 − Δ𝑡) + u(t)                                                               (1.5) 

 

                                                           �̂�𝑇(𝑡) =   𝐻  (𝑡)   ×   �̂�−(𝑡)                                                           (1.6)  

 

                                                          �̂�−(𝑡) =   �̂�+(𝑡 − Δ𝑡)                                                                      (1.7) 

 

                                                         𝐺(𝑡) =   �̂�−(𝑡)𝐻(𝑡)𝑇 [𝐻(𝑡)�̂�−(𝑡)  𝐻(𝑡)𝑇 + 𝑅]−1                            (1.8) 

 

                                                         �̂�+(𝑡) = �̂�−(𝑡) + 𝐺(𝑡)  [𝑇𝑇(𝑡) −  �̂�𝑇  (𝑡)]                                   (1.9)  

 

                                                        �̂�+(𝑡) = �̂�−(𝑡) × [1 − 𝐻  (𝑡)  𝐺  (𝑡)]                                             (1.10) 

 

where Nˆ− and Nˆ+ are the priori and the posterior vehicle count estimates, TT^ is the estimated average 

travel time, Pˆ− and Pˆ+ are the priori and posterior covariance estimate for the state system, G is the Kalman 

gain, and R is the error covariance in the measurement system. For more details, readers can refer to 

(Aljamal, Abdelghaffar, and Rakha 2020b). 

The AKF Approach 

The linear AKF dynamically estimates the noise error values for the state and measurement systems every 

estimation step. The AKF approach can be solved using the following equations: 

 

                                                        �̂�
−

(𝑡) = �̂�
+

(𝑡 − Δ𝑡) + 𝑢(𝑡) + 𝑚(𝑡 − Δ𝑡)                                   (1.11) 

 

                                                            �̂�𝑇(𝑡) =   𝐻  (𝑡)   ×   �̂�−(𝑡)                                                       (1.12)  

 

                                                       �̂�
−

(𝑡) =   �̂�
+

(𝑡 − Δ𝑡) + 𝑀(𝑡 − Δ𝑡)                                                 (1.13)  

 

                                                      𝑟 =
1

𝑛
∑𝑛

𝑡=1 𝑟(𝑡),    where  𝑟(𝑡) = 𝑇𝑇(𝑡) − 𝐻(𝑡) �̂�−(𝑡)                 (1.14)  

 

                                                𝑅 =
1

𝑛−1
∑𝑛

𝑡=1  [(𝑟(𝑡) − 𝑟). (𝑟(𝑡) − 𝑟)𝑇 − (
𝑛−1

𝑛
)𝐻(𝑡)�̂�−(𝑡)𝐻𝑇(𝑡)]      (1.15) 

 

                                                  𝐺(𝑡) =   �̂�−(𝑡)𝐻(𝑡)𝑇 [𝐻(𝑡)�̂�−(𝑡)  𝐻(𝑡)𝑇 + 𝑅(𝑡)]−1                         (1.16) 

 

                                              �̂�
+

(𝑡) = �̂�
−

(𝑡) + 𝐺(𝑡)  [𝑇𝑇(𝑡) − 𝐻(𝑡)�̂�
−

(𝑡) − 𝑟(𝑡)]                        (1.17) 

 

                                              �̂�
+

(𝑡) = �̂�
−

(𝑡) × [1 − 𝐻  (𝑡)  𝐺  (𝑡)]                                                 (1.18) 

 

                                               𝑚 =
1

𝑛
∑𝑛

𝑡=1   𝑚(𝑡),    where   𝑚(𝑡) = �̂�+(𝑡) − �̂�+(𝑡 − Δ𝑡) − 𝑢(𝑡)      (1.19) 
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                                      𝑀 =
1

𝑛−1
∑𝑛

𝑡=1  [(𝑚(𝑡) − 𝑚). (𝑚(𝑡) − 𝑚)𝑇 − (
𝑛−1

𝑛
)�̂�+(𝑡 − Δ𝑡) − �̂�+(𝑡)]     (1.20) 

 

where r and R are the mean and covariance of the measurement noise, n is the number of state noise samples, 

and m and M are the mean and covariance of the state noise. 

The PF Approach 

The PF is a nonlinear filtering technique. First, the PF generates different particles with unique relative 

weights. In every estimation step, the system removes the particles with low relative weights and replaces 

them with new particles (resampling) and thus the system preserves only the important particles. The PF 

approach can be implemented using the following steps: 

 

1) Initialization: t = 0 

Nˆ+(0), R, V, and l. 

Generate particles: 

                                                        𝑁𝑙(0) ∼ 𝑃(𝑁0)                                                                 (1.21) 

 

2) For t = 1: T 

 

                                                   𝑁𝑙(𝑡) = 𝑁𝑙(𝑡 − Δ𝑡) + 𝑢(𝑡)                                                  (1.22) 

 

                                                   𝑇𝑇𝑙(𝑡) =   𝐻(𝑡) × 𝑁𝑙(𝑡)                                                       (1.23) 

 

                                                  𝑤𝑙(𝑡) =
1

√2𝜋𝑅
 𝑒−(𝑇𝑇−𝑇𝑇𝑙(𝑡))

2
/2𝑅                                             (1.24) 

 

                                                  �̂�𝑙(𝑡) = 𝑤𝑙(𝑡)/ ∑𝐿
𝑙=1 𝑤𝑙(𝑡)                                                    (1.25) 

 

After normalizing the weights using Equation (1.25), the low-weighted particles are replaced with 

new particles (resampling (Liu and Chen 1998)). After a few iterations in the PF process, the weight 

will focus on a few particles only and most particles will have insignificant weights, resulting in 

sample degeneracy (Li, Sattar, and Sun 2012). The resampling process is therefore used to tackle 

the degeneracy problem. 

 

                                                 �̂�+(𝑡) =
1

𝐿
∑𝐿

𝑙=1 𝑁𝑙(𝑡)                                                            (1.26) 

where V is the variance of the initial vehicle count estimate, Nl is the particles’ locations from 1 to 

L, and TT is the observed measurement from the CVs. More details can be found in (Aljamal, 

Abdelghaffar, and Rakha 2020a) 

3.2. Second Approach: Integrating Data-Driven and Model-Driven Approaches 

In our state-space equations, the ρ variable is found to be the main source of noise in the state-space model 

(Aljamal, Abdelghaffar, and Rakha 2020b). Unlike the first research approach described in section 3.1, two 

ρ variables, instead of one ρ variable, are used in the state-space equations: (1) the ρin, and (2) the ρout. The 

ρin and ρout are observed at the entrance and exit of the link, respectively. The ρin and the ρout are displayed 
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in Equations (1.27) and (1.28), respectively. The Acv, AT , Dcv, and DT are the number of CV arrivals, 

total number of arrivals, number of CV departures, and total number of departures, respectively. Equations 

(1.29) and (1.30) present the new formulation of the u(t) and H(t) using the two ρ variables. 

                                                                      𝜌𝑖𝑛(𝑡) = 𝐴𝑐𝑣/𝐴𝑇                                                               (1.27) 

                                                                    𝜌𝑜𝑢𝑡(𝑡) = 𝐷𝑐𝑣/𝐷𝑇                                                              (1.28) 

                                                                 𝑢(𝑡) = Δ𝑡 [
𝑞𝑖𝑛(𝑡)

𝜌𝑖𝑛(𝑡)
−

𝑞𝑜𝑢𝑡(𝑡)

𝜌𝑜𝑢𝑡(𝑡)
]                                                     (1.29) 

                                                                 𝐻(𝑡) =
2

𝑞𝑖𝑛(𝑡)

𝜌𝑖𝑛(𝑡)
+

𝑞𝑜𝑢𝑡(𝑡)

𝜌𝑜𝑢𝑡(𝑡)

                                                                 (1.30) 

It should be noted that the two variables can be measured if two fixed sensors (e.g., cameras) are installed 

at the entry and exit of the tested link; however, the installation cost is high and thus makes this approach 

undesirable. A more efficient approach is to employ estimation techniques such as machine learning without 

the need to add any changes to the existing infrastructure. Hence, in this research approach, an ANN is 

developed to estimate the ρin and ρout variables. 

ANN Approach 

The ANN data-driven model is a combination of simple units (nodes) that are connected by links. The 

ANN aims to recognize relationships between an enormous amount of data by adding a certain number of 

neurous in the assigned hidden layers. The ANN contains three layers: the input layer, the hidden layer, 

and the output layer (Kubat 1999). The mechanism behind the ANN is that every node receives/sends 

signals from incoming/outgoing links by performing computations. The links that connect the nodes in 

the network have certain weight values, and these weights determine the strength of the connection 

between the nodes. 

ANN Inputs and Outputs 

In this section, the aim was to use the nearest existing fixed sensor with the CV data to build the ANN 

model. As seen in Figure 1.1, an existing camera was located upstream of the tested link (at the intersection 

of College Street). The camera in the field measures the total traffic counts at the intersection. Consequently, 

the total traffic count variable is used as an input for the ANN model. CVs are used to generate the inputs 

of the ANN model due to their their ability to provide measurements at any location inside the network. 

Seven inputs are used to build the ANN approach, as follows: 

1. The total traffic counts obtained from the camera (CT ), 

2. The number of CVs on the tested link (Ncv), 

3. The number of CVs at the entrance of the link (Acv), 

4. The space-mean speed of CVs (us), 

5. The average speed for CVs at link entrance (S1), 

6. The average speed for CVs at link exit (S2), and 

7. The estimation interval time (∆t). 
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Figure 1.2 displays the ANN inputs and outputs. To build a strong ANN approach, the inputs must relate 

to the outputs, which allows the ANN to define the relationship between the two. For instance, a high value 

of traffic volumes (CT , Ncv, and Acv) means that we have more vehicles in the link, which results in large 

values in the denominator in Equations (1.27) and (1.28). The speed factor (us, S1, and S2) is also an 

important indicator of the level of congestion. A congested link can also result in having large values in the 

denominator in the two equations. It should be noted that the ∆t variable strongly relates to the output 

variables. Remember that the ∆t is not a constant value and is updated when five new CVs are observed at 

the end of the link. A high ∆t value means that the number of CVs is low, which results in low output 

values. The ANN output variables are the ρin and ρout. In reality, the ρ output values vary between 0 and 1; 

a 0 means that no CVs are observed, while a 1 means that the number of CVs is equal to the total number 

of vehicles. 

 

Figure 0.2: Estimate the ρin and ρout variables 

The developed ANN approach consists of single hidden layer with 10 neurons using a transfer function of 

hyperbolic tansgent sigmoid and the Levenberg-Marquardt (LM) optimization method. 

After developing and training the ANN approach, the estimated values for the ρin and ρout are used in our 

most accurate model-driven approach to estimate the main research goal, which is the vehicle count. 

3.3. Third Approach: Data-Driven Approaches 

The third research approach aims to directly estimate the vehicle counts by developing different data-

driven estimation approaches: (1) ANN approach, (2) k- NN, and (3) RF approach. The data-driven 

approaches are developed using CV data only; data from the camera is not necessary. Six inputs are 

considered to train and build the data-driven approaches, as shown in Figure 1.3. 

 

 
Figure 0.3: Estimate the vehicle counts (NT ) on the tested link. 

ANN Approach 

To estimate the vehicle counts using the ANN approach, the structure of the ANN consists of a single 

hidden layer with 10 neurons. A transfer function of hyperbolic tansgent sigmoid and the Levenberg-

Marquardt (LM) optimization method are used. 
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k-NN Approach 

The k-NN approach (Cover and Hart 1967) is used for classification and regression applications. The k-NN 

approach does not build a model but requires storing the entire data set. To estimate a new value using k-

NN, the following information is required: (1) having access to the training records, (2) defining the distance 

metric to compute the distance between the records, and (3) identifying the value of the number of nearest 

neighbors (k). The results section will test different k values to find the optimal k value for the k-NN 

approach. The new estimated value is computed by taking the average value of the nearest neighbors. 

RF Approach 

The RF approach (Breima 2010) is a supervised learning technique and can be used in classification and 

regression. The RF is a set of decision trees. Each decision tree is constructed using a subset of inputs. The 

desired estimation values are given based on the majority votes from all trees. The advantage of using RF 

is its ability to handle large data sets without the need to create dummy variables. For the purpose of this 

study, 100 trees were used to develop the RF. 

4. Results and Discussion 

This section tests the accuracy of the three research approaches on a signalized link in downtown 

Blacksburg, VA. The Relative Root Mean Square Error (RRMSE) and the Root Mean Square Error 

(RMSE) are used to evaluate and compare the proposed estimation approaches. The RRMSE and RMSE 

can be computed using Equations (1.31) and (1.32), respectively. 

                                      𝑅𝑅𝑀𝑆𝐸(%)  =  100 √𝑆 ∑𝑆
𝑠=1 [�̂�+(𝑠) − 𝑁(𝑠)]2/ ∑𝑆

𝑠=1 𝑁(𝑆)                       (1.31) 

 

                                   𝑅𝑀𝑆𝐸(𝑣𝑒ℎ)  =  √∑𝑆
𝑠=1 [�̂�+(𝑠) − 𝑁(𝑠)]2/𝑆                                               (1.32) 

where N (s) is the actual vehicle count, Nˆ+(s) is the estimated vehicle count value, and S is the total 

number of estimations. 

4.1. First Research Approach 

This section evaluates the three estimation model-driven approaches, (1) KF, (2) AKF, and (3) PF, using 

data from CVs only. The three approaches are used to estimate the number of vehicles crossing the tested 

link. Table 1.1 presents the RRMSE and RMSE values at different LMPs: 1, 3, 5, 8, 10, 15, 20, 30, 40, 

50, 60, 70, 80, and 90%. For most of the LMP scenarios, the KF approach produces the lowest error 

values, while the PF approach outperforms the KF and the AKF for a few scenarios (1, 70, 80, and 90%). 

However, the nonlinear PF requires more computational time. Consequently, the use of the linear KF 

approach is highly recommended due to its simplicity and high-performance accuracy. 
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Table 0.1: RRMSE and RMSE values of KF, AKF, and PF approaches for different LMPs 

LMPs % 

RRMSE (%), RMSE (veh) 

KF AKF PF 

1 44, 3.2 58, 4.3 37, 2.8 

3 39, 3.0 48, 3.6 39, 3.0 

5 37, 2.8 44, 3.2 38, 2.9 

8 36, 2.8 40, 3.0 37, 2.9 

10 36, 2.8 38, 2.9 37, 2.9 

15 36, 2.8 40, 3.0 39, 3.0 

20 37, 2.8 39, 3.0 39, 3.0 

30 38, 2.9 38, 2.9 42, 3.2 

40 37, 2.9 38, 2.9 39, 3.0 

 

4.2. Second Research Approach 

First, the ANN approach is developed to estimate the percentage of the CVs to the total number of 

vehicles at the entry and the exit of the tested link; ρin and ρout, respectively. Table 1.2 presents the 

RRMSE values for estimating the two variables. The results demonstrate that the ANN produces 

reasonable error values; the errors for estimating the ρin vary between 14 and 25% while the error values 

are between 10 and 23% for the ρout. 

After that, the estimated ρ values are used as inputs to the KF approach to estimate the vehicle counts on 

the tested link. A new approach, named KFNN, is developed based on integrating the KF and the ANN 

approaches. Remember that the KF approach uses an average one value of ρ in its equations, while the 

KFNN approach uses real-time values for the ρin and ρout in the KF equations at every estimation step. 

Table 1.3 shows the RRMSE values for estimating the vehicle counts using the KF and KFNN 

approaches. The table demonstrates that the KF approach outperforms the KFNN approach. Investigations 

were undertaken to find the reason for this. Findings suggested that the ANN may over-estimate the ρin 

and under-estimate the ρout or vice versa for the same estimation step, resulting in large errors in the state 

equation compared to the errors from using the average ρ. These large errors make the error correction 

from the KF more difficult. In conclusion, the use of one single rho value in the state-space equations is 

sufficient to produce accurate estimates. 
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Table 0.2: RRMSE of ρin and ρout at different LMPs. 

LMPs % 

RRMSE (%) 

ρin ρout 

10 14 19 

20 18 23 

30 22 22 

40 25 21 

50 25 19 

60 24 16 

70 24 14 

80 25 12 

90 24 10 

 

Table 0.3: RRMSE of KF and KFNN approaches at different LMPs 

LMPs % 

RRMSE (%) 

KF KFNN 

10 36 64 

20 37 50 

30 38 52 

40 37 54 

50 37 58 

60 31 59 

70 26 57 

80 23 52 

90 20 35 

 

4.3. Third Research Approach 

This section utilizes the three data-driven approaches to estimate the number of vehicles traversing the 

tested link. CV data alone are used to train and build the three approaches; camera data are not required. 

First, different neighbors (k) are tested to calibrate and train the k-NN approach, as shown in Table 0.4 

The optimal k was found to be 14, with an RRMSE of 18.47%. 

After calibrating the data-driven estimation approaches, external data are used to test and evaluate the 

estimation approaches’ performance. Table 0.5 presents the RRMSE and RMSE values using the three 

data-driven estimation approaches: ANN, k-NN, and RF. The results demonstrate that the ANN 

outperforms the k-NN and the RF for all LMP scenarios. 
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Next, the we compare the performance of the model-driven approaches (KF, AKF, and PF) and the data-

driven approaches (ANN, k-NN, and RF) for the application of the traffic stream density. Table 0.6 

summarizes the RRMSE and RMSE values using the six estimation approaches. The table demonstrates 

that the ANN approach produces the most accurate estimates compared to other approaches. However, it 

is worth mentioning the difficulties in applying this approach in the field due to the huge amount of data 

needed to train and build the ANN approach, especially for a large network (e.g., Los Angeles, CA). 

Moreover, sudden changes in traffic behaviors (e.g., incidents) would not always ensure accurate 

estimates and thus might lead to worsening traffic signal controller performance. Consequently, we 

recommend using the KF approach for the application of traffic density estimation due to its simplicity 

and applicability in the field. 

Table 0.4: RRMSE of k-NN approach using different k values 

k RRMSE (%) 

1 24.63 

2 21.63 

3 20.47 

4 19.91 

5 19.49 

6 19.27 

7 19.07 

8 18.88 

9 18.81 

10 18.68 

11 18.54 

12 18.58 

13 18.48 

14 18.47 

15 18.47 
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Table 0.5: RRMSE and RMSE values using data-driven approaches 

LMPs % 
RRMSE (%), RMSE (veh) 

ANN k-NN RF 

1 27, 2.1 40, 3.1 42, 3.2 

3 29, 2.2 37, 2.8 42, 3.2 

5 29, 2.2 37, 2.8 38, 2.8 

8 28, 2.1 36, 2.7 38, 2.8 

10 27, 2.1 35, 2.8 38, 2.8 

15 25, 1.9 33, 2.4 36, 2.7 

20 24, 1.8 33, 2.4 36, 2.7 

30 22, 1.7 30, 2.3 34, 2.6 

40 20, 1.5 27, 2.1 30, 2.3 

50 17, 1.3 24, 1.8 26, 2.0 

60 14, 1.1 22, 1.6 23, 1.7 

70 11, 0.9 20, 1.5 21, 1.6 

80 9, 0.7 18, 1.4 19, 1.5 

90 8, 0.6 17, 1.3 17, 1.3 

 

Table 0.6: RRMSE and RMSE values using model- and data-driven approaches 

LMPs % 
Model-Driven Approaches Data-Driven Approaches 

KF AKF PF ANN k-NN RF 

1 44, 3.2 58, 4.3 37, 2.8 27, 2.1 40, 3.1 42, 3.2 

3 39, 3.0 48, 3.6 39, 3.0 29, 2.2 37, 2.8 42, 3.2 

5 37, 2.8 44, 3.2 38, 2.9 29, 2.2 37, 2.8 38, 2.8 

8 36, 2.8 40, 3.0 37, 2.9 28, 2.1 36, 2.7 38, 2.8 

10 36, 2.8 38, 2.9 37, 2.9 27, 2.1 35, 2.8 38, 2.8 

15 36, 2.8 40, 3.0 39, 3.0 25, 1.9 33, 2.4 36, 2.7 

20 37, 2.8 39, 3.0 39, 3.0 24, 1.8 33, 2.4 36, 2.7 

30 38, 2.9 38, 2.9 42, 3.2 22, 1.7 30, 2.3 34, 2.6 

40 37, 2.9 38, 2.9 39, 3.0 20, 1.5 27, 2.1 30, 2.3 

50 37, 2.8 38, 2.9 37, 2.8 17, 1.3 24, 1.8 26, 2.0 

60 31, 2.4 38, 2.9 31, 2.4 14, 1.1 22, 1.6 23, 1.7 

70 26, 2.0 32, 2.5 25, 1.9 11, 0.9 20, 1.5 21, 1.6 

80 23, 1.8 31, 2.4 20, 1.5 9, 0.7 18, 1.4 19, 1.5 

90 20, 1.5 30, 2.2 14, 1.1 8, 0.6 17, 1.3 17, 1.3 
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5. Summary and Conclusions 

This work presents three research approaches to estimate the number of vehicles along signalized links. 

The first research approach presents three model-driven approaches (KF, AKF, and PF) using a single 

average ρ in the state-space equations. This first approach relies solely on CV data. The second research 

approach develops the ANN approach to estimate two ρ variables, ρin and ρout, to be used in the state-

space equations. Fused CV and camera data are utilized to build the ANN approach. After that, the second 

approach integrates the ANN with the KF approach (KFNN approach) to estimate the number of vehicles 

on signalized links. The third research approach develops three data-driven approaches (ANN, k-NN, and 

RF) to directly estimate the number of vehicles. This third approach uses only CV data to build the data-

driven approaches. The three research approaches are applied on a signalized link in downtown 

Blacksburg, VA. The main findings and conclusions of the chapter are summarized as follows: 

 The use of CV data is sufficient to provide accurate vehicle count estimates. 

 

 Using two predicted variable values in the state-space equations is not recommended, as it may 

produce undesired large errors in the state equation. It was found that the ANN approach may 

over-estimate the first variable and under-estimate the second variable or vice versa for the same 

estimation step. Consequently, the second research approach is not recommended. 

 

 The ANN is the most accurate estimation approach. However, it is also necessary to take into 

consideration the huge amount of data needed to train and build the ANN approach, the long 

computational time needed to build the ANN, and the constraints on keeping the traffic behavior 

the same as the behavior in the training data set. Based on these factors, the use of the KF 

approach is highly recommended for the application of traffic density due to its simplicity and 

applicability in the field.
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	Abstract 
	Estimation of traffic state parameters is crucial in advanced traffic management systems. However, measuring these parameters in the field is not practical since they are categorized as spatiotemporal parameters. This report presents three estimation approaches to estimate the traffic volume existing on signalized links. The first approach includes three model-driven approaches (Kalman filter [KF], adaptive KF [AKF], and particle filter [PF]) using a single average level of market penetration (ρ) in the sta
	1. Introduction 
	In the U.S., people wasted around 166 billion hours in traffic congestion in 2017, which led to a waste of  around 3.8 billion gallons of fuel. Traffic engineers and researchers are making efforts to provide solutions for the traffic congestion problem. One efficient solution is to deploy Intelligent Transportation System (ITS) applications with the aim of increasing the capacity of the existing traffic infrastructure (
	In the U.S., people wasted around 166 billion hours in traffic congestion in 2017, which led to a waste of  around 3.8 billion gallons of fuel. Traffic engineers and researchers are making efforts to provide solutions for the traffic congestion problem. One efficient solution is to deploy Intelligent Transportation System (ITS) applications with the aim of increasing the capacity of the existing traffic infrastructure (
	Wang 2010
	Wang 2010

	). One such ITS application is the use of connected vehicle (CV) technology, which can allow the exchange of information between two CVs (vehicle-to-vehicle communication) and also the exchange of information between any CV and the traffic infrastructure (vehicle-to-infrastructure communication). In the case of traffic congestion, traffic infrastructure, such as a traffic signal controller, can send early messages to the surrounding CVs to find alternative routes, leading to a reduction in travel time. 

	Traffic congestion can be represented by the macroscopic traffic stream density (the number of vehicles that traverse a specific traffic segment divided by the length of that segment). Traffic density is considered a spatial rather than a temporal measurement. Consequently, the temporal traffic occupancy measurements, obtained from loop detectors, cannot be used to estimate the traffic density for the entire link unless multiple loop detectors are installed. However, this results in high installation costs.
	To estimate the number of vehicles in a link, researchers have developed different estimation approaches, such as model-driven approaches (filtering techniques) and data-driven approaches (machine learning). In addition, different data sources have been used to implement the proposed estimation approaches, such as data from fixed sensors (e.g., loop detectors), data from two different detection sources (fusion data), and CV data. 
	1.1. Model-Driven Estimation Approaches 
	For the use of fixed sensors, the input-output approach has been widely used to develop model-driven approaches. One study developed a Kalman filter (KF) approach to estimate the vehicle counts in a signalized link using at least three loop detectors—two at the boundaries of the tested link and the third one in the middle of the link (
	For the use of fixed sensors, the input-output approach has been widely used to develop model-driven approaches. One study developed a Kalman filter (KF) approach to estimate the vehicle counts in a signalized link using at least three loop detectors—two at the boundaries of the tested link and the third one in the middle of the link (
	Vigos, Papageorgiou, and Wang 2008
	Vigos, Papageorgiou, and Wang 2008

	). Another study (
	Ghosh and Knapp 1978
	Ghosh and Knapp 1978

	) employed data from four loop detectors to estimate the number of vehicles, resulting in accurate estimates. Traffic flow and occupancy data, measured from six loop detectors, were utilized to provide accurate estimates for the vehicle counts in an on-ramp segment (
	Bhouri et al. 1989
	Bhouri et al. 1989

	). However, these studies require a high implementation cost for installing multiple fixed sensors. Moreover, it was found that fixed sensors always produce some noise in their data, requiring the use of additional data sources to reduce that noise (
	Mimbela and Klein 2007
	Mimbela and Klein 2007

	). 

	Fusion data has gained more attention following the introduction of advanced technologies such as CV technology. Recently, researchers have started using fixed sensors together with CV data for finding better estimation accuracy. One such study attempted to provide accurate estimates of traffic density using mobile sensors and loop detector data (
	Fusion data has gained more attention following the introduction of advanced technologies such as CV technology. Recently, researchers have started using fixed sensors together with CV data for finding better estimation accuracy. One such study attempted to provide accurate estimates of traffic density using mobile sensors and loop detector data (
	Herrera and Bayen 2007
	Herrera and Bayen 2007

	), showing that estimation accuracy using fusion data outperformed estimation using loop detector data. A recent study utilized CVs and cameras to estimate traffic density in a 500 m highway segment. The model’s development was based on the assumption that the average CV speed is approximately equal to the average speed of traditional vehicles (
	Bekiaris-Liberis, 
	Bekiaris-Liberis, 


	Roncoli, and Papageorgiou 2016
	Roncoli, and Papageorgiou 2016
	Roncoli, and Papageorgiou 2016

	). In that study, a KF model was developed under the consideration of having a linear parameter-varying system with known parameters. The state equation was based on the traffic flow continuity equation, while the measurement equation was based on the average speed of CVs. 
	Wright and Horowitz (2016)
	Wright and Horowitz (2016)

	 developed a particle filter (PF) using fusion loop and CV measurements to estimate the number of vehicles in a freeway section, demonstrating that the use of fusion data resulted in improved estimation accuracy. Another study (
	Di, Liu, and Davis 2010
	Di, Liu, and Davis 2010

	) developed a KF approach using fused loop and CV data to estimate the number of vehicles in a signalized link. 

	Recently, a few studies have attempted to estimate the number of vehicles in signalized links using CV data only. In those studies, KF, adaptive KF (AKF), and PF model-driven approaches were developed to provide accurate estimates (
	Recently, a few studies have attempted to estimate the number of vehicles in signalized links using CV data only. In those studies, KF, adaptive KF (AKF), and PF model-driven approaches were developed to provide accurate estimates (
	Aljamal, Abdelghaffar, and Rakha 2020b
	Aljamal, Abdelghaffar, and Rakha 2020b

	) (
	Aljamal, Abdelghaffar, and Rakha 2019a
	Aljamal, Abdelghaffar, and Rakha 2019a

	) (
	Aljamal, Abdelghaffar, and Rakha 2019b
	Aljamal, Abdelghaffar, and Rakha 2019b

	) (
	Aljamal, Abdelghaffar, and Rakha 2020a
	Aljamal, Abdelghaffar, and Rakha 2020a

	).  

	1.2. Data-Driven Approaches 
	Machine learning techniques have always required a large amount of data to build mathematical models that draw the relationship between the model’s inputs and outputs, and as such, machine learning is considered a data-driven technique. Data-driven approaches have been employed to estimate traffic state variables such as traffic density and speed (
	Machine learning techniques have always required a large amount of data to build mathematical models that draw the relationship between the model’s inputs and outputs, and as such, machine learning is considered a data-driven technique. Data-driven approaches have been employed to estimate traffic state variables such as traffic density and speed (
	Aljamal, Abdelghaffar, and Rakha 2019a
	Aljamal, Abdelghaffar, and Rakha 2019a

	) (
	Fulari, Vanajakshi, and Subramanian 2017
	Fulari, Vanajakshi, and Subramanian 2017

	) (
	Antoniou and Koutsopoulos 2006
	Antoniou and Koutsopoulos 2006

	) (
	Wassantachat et al. 2009
	Wassantachat et al. 2009

	) (
	Jahangiri, Rakha, and Dingus 2015
	Jahangiri, Rakha, and Dingus 2015

	) (
	Sekuła et al. 2018
	Sekuła et al. 2018

	) (
	Raj, Bahuleyan, and Vanajakshi 2016
	Raj, Bahuleyan, and Vanajakshi 2016

	). In previous studies, proposed estimation approaches have relied on different detection techniques, such as fixed sensors and fusion data. 

	Artificial neural network (ANN) and k-nearest neighbor (k-NN) data-driven approaches were developed to produce reliable estimates for vehicle counts (
	Artificial neural network (ANN) and k-nearest neighbor (k-NN) data-driven approaches were developed to produce reliable estimates for vehicle counts (
	Raj, Bahuleyan, and Vanajakshi 2016
	Raj, Bahuleyan, and Vanajakshi 2016

	). In that study, authors relied on fixed sensors to obtain traffic speed and flow measurements to build and train the ANN and the k-NN approaches. 
	Fulari, Vanajakshi, and Subramanian (2017)
	Fulari, Vanajakshi, and Subramanian (2017)

	 developed an ANN approach to estimate the number of vehicles using video and Bluetooth data. It was found that the ANN approach performed well if a good quantity of training data was accessible. Fused loop and CV data were used to develop support vector machine and k-NN approaches, with the aim of estimating the level of traffic congestion in a freeway segment (
	Khan, Dey, and Chowdhury 2017
	Khan, Dey, and Chowdhury 2017

	). Another study (
	Sekuła et al. 2018
	Sekuła et al. 2018

	) deployed data from fixed sensors and CVs to build different data-driven estimation approaches such as ANN, k-NN, and random forest (RF) to estimate hourly traffic volumes. In that study, the ANN approach was found to outperform the other approaches. 
	Aljamal, Abdelghaffar, and Rakha (2019a)
	Aljamal, Abdelghaffar, and Rakha (2019a)

	 developed an ANN approach to estimate the CV level of market penetration (LMP) rate. In that study, the ANN approach provided the AKF approach with real-time values of the LMPs, resulting in an improved vehicle count estimation accuracy. The LMP represents the percentage of the CVs in relation to the total number of vehicles. 

	In summary, previous studies have shown the benefits of using data-driven approaches in addressing different aspects of the traffic state estimation problem. Therefore, the research described in this study aims to develop data-driven approaches in the application of traffic stream density estimation (vehicle counts). One commonality among the related previous studies is that they all estimated vehicle counts using data from fixed sensors or using fused source data (e.g., loop with CV data). 
	The research described in this study aims to develop different data-driven estimation techniques to estimate the vehicle counts using only CV data. The proposed estimation approaches are applied to test a signalized link in downtown Blacksburg, VA. The proposed research extends the state-of-the-art in vehicle count estimation by making three major contributions: 
	1. Developing three data-driven estimation approaches to estimate the vehicle counts in signalized links. The three data-driven approaches are developed using only CV data. 
	1. Developing three data-driven estimation approaches to estimate the vehicle counts in signalized links. The three data-driven approaches are developed using only CV data. 
	1. Developing three data-driven estimation approaches to estimate the vehicle counts in signalized links. The three data-driven approaches are developed using only CV data. 

	2. Developing a data-driven approach to estimate the LMP for CVs at the entrance and exit of the link. 
	2. Developing a data-driven approach to estimate the LMP for CVs at the entrance and exit of the link. 

	3. Comparing the three proposed data-driven approaches with state-of-the-art model-driven estimation approaches. 
	3. Comparing the three proposed data-driven approaches with state-of-the-art model-driven estimation approaches. 


	2. Development of Simulation Data  
	A congested link in downtown Blacksburg, VA was selected to evaluate the proposed estimation approaches. The link falls between two traffic signals, as shown in Error! Reference source not found.. The link length is 97 meters. INTEGRATION traffic simulation software was used to simulate the network in Error! Reference source not found.. The traffic Origin-Destination (O-D) values for the network were calibrated using real count data. The speed limit of the tested link is 40 km/h, the speed-at-capacity is 32
	 
	Figure
	Figure 0.1: Tested link section in downtown Blacksburg, VA 
	2.1. Generation of the Training Dataset 
	Training data are needed to develop machine learning estimation approaches. INTEGRATION simulation software was used to facilitate the generation of the CV data, as the CV data are not easy to access. In the simulation input files, 400 scenarios, combining the O-D values and right turn traffic volumes that exit the Main street toward Jackson street, were considered. For the O-Ds and right turn traffic volumes, 20 different demand scaling factors generated from a normal distribution, ranging from 0.8 to 1.2,
	3. Methodology 
	In this section, three research approaches are presented: (1) model-driven approaches, (2) integrated data-driven and model-driven approaches, and (3) data-driven approaches. In the first research approach, linear and nonlinear filtering approaches were used to estimate the vehicle counts. The second approach first developed a data-driven approach to estimate the ratio of the number of CVs (NCV) to the total number of vehicles (NT), and then combined the data-driven approach with the most accurate model-dri
	3.1. First Approach: Model-Driven Approaches 
	Linear and nonlinear filtering approaches are presented in this section: (1) KF, (2) AKF, and (3) PF. These filtering techniques are always used to solve state-space models. A state-space model is represented by: (1) a state, and (2) a measurement system. The filtering techniques are mainly used to provide posterior estimates given some measurements, with the aim of minimizing the errors in the priori estimates. 
	In this chapter, the state-space model presented in (
	In this chapter, the state-space model presented in (
	Aljamal, Abdelghaffar, and Rakha 2020b
	Aljamal, Abdelghaffar, and Rakha 2020b

	) is used to estimate the vehicle counts. The state and measurement equations are presented in Equations (1.1) and (1.3), respectively. 

	 
	                                          𝑁(𝑡)=𝑁(𝑡−Δ𝑡)+𝑢(𝑡)                                                                            (1.1) 
	 
	                                           𝑢(𝑡)=Δ𝑡 [𝑞𝑖𝑛(𝑡)−𝑞𝑜𝑢𝑡(𝑡)]max(𝜌𝑎𝑐𝑡𝑢𝑎𝑙,𝜌𝑚𝑖𝑛)                                                                              (1.2) 
	 
	                                           𝑇𝑇(𝑡)=𝐻(𝑡)×𝑁(𝑡)                                                                                  (1.3) 
	 
	                                          𝐻(𝑡)=1𝑞̅(𝑡)=2 ×𝜌𝑎𝑐𝑡𝑢𝑎𝑙𝑞𝑖𝑛(𝑡)+𝑞𝑜𝑢𝑡(𝑡)                                                                          (1.4) 
	 
	where N (t) is the number of vehicles crossing the link at time t, N (t − ∆t) is the number of vehicles crossing the link in the preceding time interval, ρ is the CVs’ LMP, defined as the ratio of the CV counts to the total vehicle counts. In this research approach, the ρ is computed from historical data and assumed to remain constant for the entire simulation. For instance, if a scenario of 10% LMP is evaluated, the ρ value is assumed to be 10%. qin and qout represent the flow of CVs entering and exiting t
	where N (t) is the number of vehicles crossing the link at time t, N (t − ∆t) is the number of vehicles crossing the link in the preceding time interval, ρ is the CVs’ LMP, defined as the ratio of the CV counts to the total vehicle counts. In this research approach, the ρ is computed from historical data and assumed to remain constant for the entire simulation. For instance, if a scenario of 10% LMP is evaluated, the ρ value is assumed to be 10%. qin and qout represent the flow of CVs entering and exiting t
	Aljamal, Abdelghaffar, and Rakha 2020b
	Aljamal, Abdelghaffar, and Rakha 2020b

	). TT is the average travel time for CVs. The following subsections present three filtering techniques to solve the described state-space model. 

	The KF Approach 
	The KF is a linear filtering technique and can be implemented using the following equations: 
	 
	                                                           𝑁̂−(𝑡)=𝑁̂+(𝑡−Δ𝑡)+u(t)                                                               (1.5) 
	 
	                                                           𝑇̂𝑇(𝑡)=  𝐻  (𝑡)  ×  𝑁̂−(𝑡)                                                           (1.6)  
	 
	                                                          𝑃̂−(𝑡)=  𝑃̂+(𝑡−Δ𝑡)                                                                      (1.7) 
	 
	                                                         𝐺(𝑡)=  𝑃̂−(𝑡)𝐻(𝑡)𝑇 [𝐻(𝑡)𝑃̂−(𝑡)  𝐻(𝑡)𝑇+𝑅]−1                            (1.8) 
	 
	                                                         𝑁̂+(𝑡)=𝑁̂−(𝑡)+𝐺(𝑡)  [𝑇𝑇(𝑡)−  𝑇̂𝑇  (𝑡)]                                   (1.9)  
	 
	                                                        𝑃̂+(𝑡)=𝑃̂−(𝑡)×[1−𝐻  (𝑡)  𝐺  (𝑡)]                                             (1.10) 
	 
	where Nˆ− and Nˆ+ are the priori and the posterior vehicle count estimates, TT^ is the estimated average travel time, Pˆ− and Pˆ+ are the priori and posterior covariance estimate for the state system, G is the Kalman gain, and R is the error covariance in the measurement system. For more details, readers can refer to (
	where Nˆ− and Nˆ+ are the priori and the posterior vehicle count estimates, TT^ is the estimated average travel time, Pˆ− and Pˆ+ are the priori and posterior covariance estimate for the state system, G is the Kalman gain, and R is the error covariance in the measurement system. For more details, readers can refer to (
	Aljamal, Abdelghaffar, and Rakha 2020b
	Aljamal, Abdelghaffar, and Rakha 2020b

	). 

	The AKF Approach 
	The linear AKF dynamically estimates the noise error values for the state and measurement systems every estimation step. The AKF approach can be solved using the following equations: 
	 
	                                                        𝑁̂−(𝑡)=𝑁̂+(𝑡−Δ𝑡)+𝑢(𝑡)+𝑚(𝑡−Δ𝑡)                                   (1.11) 
	 
	                                                            𝑇̂𝑇(𝑡)=  𝐻  (𝑡)  ×  𝑁̂−(𝑡)                                                       (1.12)  
	 
	                                                       𝑃̂−(𝑡)=  𝑃̂+(𝑡−Δ𝑡)+𝑀(𝑡−Δ𝑡)                                                 (1.13)  
	 
	                                                      𝑟=1𝑛∑𝑛𝑡=1𝑟(𝑡),    where  𝑟(𝑡)=𝑇𝑇(𝑡)−𝐻(𝑡) 𝑁̂−(𝑡)                 (1.14)  
	 
	                                                𝑅=1𝑛−1∑𝑛𝑡=1 [(𝑟(𝑡)−𝑟).(𝑟(𝑡)−𝑟)𝑇−(𝑛−1𝑛)𝐻(𝑡)𝑃̂−(𝑡)𝐻𝑇(𝑡)]      (1.15) 
	 
	                                                  𝐺(𝑡)=  𝑃̂−(𝑡)𝐻(𝑡)𝑇 [𝐻(𝑡)𝑃̂−(𝑡)  𝐻(𝑡)𝑇+𝑅(𝑡)]−1                         (1.16) 
	 
	                                              𝑁̂+(𝑡)=𝑁̂−(𝑡)+𝐺(𝑡)  [𝑇𝑇(𝑡)−𝐻(𝑡)𝑁̂−(𝑡)−𝑟(𝑡)]                        (1.17) 
	 
	                                              𝑃̂+(𝑡)=𝑃̂−(𝑡)×[1−𝐻  (𝑡)  𝐺  (𝑡)]                                                 (1.18) 
	 
	                                               𝑚=1𝑛∑𝑛𝑡=1  𝑚(𝑡),    where   𝑚(𝑡)=𝑁̂+(𝑡)−𝑁̂+(𝑡−Δ𝑡)−𝑢(𝑡)      (1.19) 
	 
	                                      𝑀=1𝑛−1∑𝑛𝑡=1 [(𝑚(𝑡)−𝑚).(𝑚(𝑡)−𝑚)𝑇−(𝑛−1𝑛)𝑃̂+(𝑡−Δ𝑡)−𝑃̂+(𝑡)]     (1.20) 
	 
	where r and R are the mean and covariance of the measurement noise, n is the number of state noise samples, and m and M are the mean and covariance of the state noise. 
	The PF Approach 
	The PF is a nonlinear filtering technique. First, the PF generates different particles with unique relative weights. In every estimation step, the system removes the particles with low relative weights and replaces them with new particles (resampling) and thus the system preserves only the important particles. The PF approach can be implemented using the following steps: 
	 
	1) Initialization: t = 0 
	1) Initialization: t = 0 
	1) Initialization: t = 0 


	Nˆ+(0), R, V, and l. 
	Generate particles: 
	                                                        𝑁𝑙(0)∼𝑃(𝑁0)                                                                 (1.21) 
	 
	2) For t = 1: T 
	2) For t = 1: T 
	2) For t = 1: T 


	 
	                                                   𝑁𝑙(𝑡)=𝑁𝑙(𝑡−Δ𝑡)+𝑢(𝑡)                                                  (1.22) 
	 
	                                                   𝑇𝑇𝑙(𝑡)=  𝐻(𝑡)×𝑁𝑙(𝑡)                                                       (1.23) 
	 
	                                                  𝑤𝑙(𝑡)=1√2𝜋𝑅 𝑒−(𝑇𝑇−𝑇𝑇𝑙(𝑡))2/2𝑅                                             (1.24) 
	 
	                                                  𝑤̂𝑙(𝑡)=𝑤𝑙(𝑡)/∑𝐿𝑙=1𝑤𝑙(𝑡)                                                    (1.25) 
	 
	After normalizing the weights using Equation (1.25), the low-weighted particles are replaced with new particles (resampling (
	After normalizing the weights using Equation (1.25), the low-weighted particles are replaced with new particles (resampling (
	Liu and Chen 1998
	Liu and Chen 1998

	)). After a few iterations in the PF process, the weight will focus on a few particles only and most particles will have insignificant weights, resulting in sample degeneracy (
	Li, Sattar, and Sun 2012
	Li, Sattar, and Sun 2012

	). The resampling process is therefore used to tackle the degeneracy problem. 

	 
	                                                 𝑁̂+(𝑡)=1𝐿∑𝐿𝑙=1𝑁𝑙(𝑡)                                                            (1.26) 
	where V is the variance of the initial vehicle count estimate, Nl is the particles’ locations from 1 to L, and TT is the observed measurement from the CVs. More details can be found in (
	where V is the variance of the initial vehicle count estimate, Nl is the particles’ locations from 1 to L, and TT is the observed measurement from the CVs. More details can be found in (
	Aljamal, Abdelghaffar, and Rakha 2020a
	Aljamal, Abdelghaffar, and Rakha 2020a

	) 

	3.2. Second Approach: Integrating Data-Driven and Model-Driven Approaches 
	In our state-space equations, the ρ variable is found to be the main source of noise in the state-space model (
	In our state-space equations, the ρ variable is found to be the main source of noise in the state-space model (
	Aljamal, Abdelghaffar, and Rakha 2020b
	Aljamal, Abdelghaffar, and Rakha 2020b

	). Unlike the first research approach described in section 3.1, two ρ variables, instead of one ρ variable, are used in the state-space equations: (1) the ρin, and (2) the ρout. The ρin and ρout are observed at the entrance and exit of the link, respectively. The ρin and the ρout are displayed 

	in Equations (1.27) and (1.28), respectively. The Acv, AT , Dcv, and DT are the number of CV arrivals, total number of arrivals, number of CV departures, and total number of departures, respectively. Equations (1.29) and (1.30) present the new formulation of the u(t) and H(t) using the two ρ variables. 
	                                                                      𝜌𝑖𝑛(𝑡)=𝐴𝑐𝑣/𝐴𝑇                                                               (1.27) 
	                                                                    𝜌𝑜𝑢𝑡(𝑡)=𝐷𝑐𝑣/𝐷𝑇                                                              (1.28) 
	                                                                 𝑢(𝑡)=Δ𝑡 [𝑞𝑖𝑛(𝑡)𝜌𝑖𝑛(𝑡)−𝑞𝑜𝑢𝑡(𝑡)𝜌𝑜𝑢𝑡(𝑡)]                                                     (1.29) 
	                                                                 𝐻(𝑡)=2𝑞𝑖𝑛(𝑡)𝜌𝑖𝑛(𝑡)+𝑞𝑜𝑢𝑡(𝑡)𝜌𝑜𝑢𝑡(𝑡)                                                                 (1.30) 
	It should be noted that the two variables can be measured if two fixed sensors (e.g., cameras) are installed at the entry and exit of the tested link; however, the installation cost is high and thus makes this approach undesirable. A more efficient approach is to employ estimation techniques such as machine learning without the need to add any changes to the existing infrastructure. Hence, in this research approach, an ANN is developed to estimate the ρin and ρout variables. 
	ANN Approach 
	The ANN data-driven model is a combination of simple units (nodes) that are connected by links. The ANN aims to recognize relationships between an enormous amount of data by adding a certain number of neurous in the assigned hidden layers. The ANN contains three layers: the input layer, the hidden layer, and the output layer (
	The ANN data-driven model is a combination of simple units (nodes) that are connected by links. The ANN aims to recognize relationships between an enormous amount of data by adding a certain number of neurous in the assigned hidden layers. The ANN contains three layers: the input layer, the hidden layer, and the output layer (
	Kubat 1999
	Kubat 1999

	). The mechanism behind the ANN is that every node receives/sends signals from incoming/outgoing links by performing computations. The links that connect the nodes in the network have certain weight values, and these weights determine the strength of the connection between the nodes. 

	ANN Inputs and Outputs 
	In this section, the aim was to use the nearest existing fixed sensor with the CV data to build the ANN model. As seen in Figure 1.1, an existing camera was located upstream of the tested link (at the intersection of College Street). The camera in the field measures the total traffic counts at the intersection. Consequently, the total traffic count variable is used as an input for the ANN model. CVs are used to generate the inputs of the ANN model due to their their ability to provide measurements at any lo
	Seven inputs are used to build the ANN approach, as follows: 
	1. The total traffic counts obtained from the camera (CT ), 
	1. The total traffic counts obtained from the camera (CT ), 
	1. The total traffic counts obtained from the camera (CT ), 

	2. The number of CVs on the tested link (Ncv), 
	2. The number of CVs on the tested link (Ncv), 

	3. The number of CVs at the entrance of the link (Acv), 
	3. The number of CVs at the entrance of the link (Acv), 

	4. The space-mean speed of CVs (us), 
	4. The space-mean speed of CVs (us), 

	5. The average speed for CVs at link entrance (S1), 
	5. The average speed for CVs at link entrance (S1), 

	6. The average speed for CVs at link exit (S2), and 
	6. The average speed for CVs at link exit (S2), and 

	7. The estimation interval time (∆t). 
	7. The estimation interval time (∆t). 


	 
	Figure 1.2 displays the ANN inputs and outputs. To build a strong ANN approach, the inputs must relate to the outputs, which allows the ANN to define the relationship between the two. For instance, a high value of traffic volumes (CT , Ncv, and Acv) means that we have more vehicles in the link, which results in large values in the denominator in Equations (1.27) and (1.28). The speed factor (us, S1, and S2) is also an important indicator of the level of congestion. A congested link can also result in having
	 
	Figure
	Figure 0.2: Estimate the ρin and ρout variables 
	The developed ANN approach consists of single hidden layer with 10 neurons using a transfer function of hyperbolic tansgent sigmoid and the Levenberg-Marquardt (LM) optimization method. 
	After developing and training the ANN approach, the estimated values for the ρin and ρout are used in our most accurate model-driven approach to estimate the main research goal, which is the vehicle count. 
	3.3. Third Approach: Data-Driven Approaches 
	The third research approach aims to directly estimate the vehicle counts by developing different data-driven estimation approaches: (1) ANN approach, (2) k- NN, and (3) RF approach. The data-driven approaches are developed using CV data only; data from the camera is not necessary. Six inputs are considered to train and build the data-driven approaches, as shown in Figure 1.3. 
	 
	 
	Figure
	Figure 0.3: Estimate the vehicle counts (NT ) on the tested link. 
	ANN Approach 
	To estimate the vehicle counts using the ANN approach, the structure of the ANN consists of a single hidden layer with 10 neurons. A transfer function of hyperbolic tansgent sigmoid and the Levenberg-Marquardt (LM) optimization method are used. 
	k-NN Approach 
	The k-NN approach (
	The k-NN approach (
	Cover and Hart 1967
	Cover and Hart 1967

	) is used for classification and regression applications. The k-NN approach does not build a model but requires storing the entire data set. To estimate a new value using k-NN, the following information is required: (1) having access to the training records, (2) defining the distance metric to compute the distance between the records, and (3) identifying the value of the number of nearest neighbors (k). The results section will test different k values to find the optimal k value for the k-NN approach. The n

	RF Approach 
	The RF approach (
	The RF approach (
	Breima 2010
	Breima 2010

	) is a supervised learning technique and can be used in classification and regression. The RF is a set of decision trees. Each decision tree is constructed using a subset of inputs. The desired estimation values are given based on the majority votes from all trees. The advantage of using RF is its ability to handle large data sets without the need to create dummy variables. For the purpose of this study, 100 trees were used to develop the RF. 

	4. Results and Discussion 
	This section tests the accuracy of the three research approaches on a signalized link in downtown Blacksburg, VA. The Relative Root Mean Square Error (RRMSE) and the Root Mean Square Error (RMSE) are used to evaluate and compare the proposed estimation approaches. The RRMSE and RMSE can be computed using Equations (1.31) and (1.32), respectively. 
	                                      𝑅𝑅𝑀𝑆𝐸(%) = 100 √𝑆∑𝑆𝑠=1[𝑁̂+(𝑠)−𝑁(𝑠)]2/∑𝑆𝑠=1𝑁(𝑆)                       (1.31) 
	 
	                                   𝑅𝑀𝑆𝐸(𝑣𝑒ℎ) = √∑𝑆𝑠=1[𝑁̂+(𝑠)−𝑁(𝑠)]2/𝑆                                               (1.32) 
	where N (s) is the actual vehicle count, Nˆ+(s) is the estimated vehicle count value, and S is the total number of estimations. 
	4.1. First Research Approach 
	This section evaluates the three estimation model-driven approaches, (1) KF, (2) AKF, and (3) PF, using data from CVs only. The three approaches are used to estimate the number of vehicles crossing the tested link. Table 1.1 presents the RRMSE and RMSE values at different LMPs: 1, 3, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, and 90%. For most of the LMP scenarios, the KF approach produces the lowest error values, while the PF approach outperforms the KF and the AKF for a few scenarios (1, 70, 80, and 90%). 
	Table 0.1: RRMSE and RMSE values of KF, AKF, and PF approaches for different LMPs 
	Table
	TBody
	TR
	Span
	LMPs % 
	LMPs % 

	RRMSE (%), RMSE (veh) 
	RRMSE (%), RMSE (veh) 


	TR
	Span
	KF 
	KF 

	AKF 
	AKF 

	PF 
	PF 


	TR
	Span
	1 
	1 

	44, 3.2 
	44, 3.2 

	58, 4.3 
	58, 4.3 

	37, 2.8 
	37, 2.8 


	TR
	Span
	3 
	3 

	39, 3.0 
	39, 3.0 

	48, 3.6 
	48, 3.6 

	39, 3.0 
	39, 3.0 


	TR
	Span
	5 
	5 

	37, 2.8 
	37, 2.8 

	44, 3.2 
	44, 3.2 

	38, 2.9 
	38, 2.9 


	TR
	Span
	8 
	8 

	36, 2.8 
	36, 2.8 

	40, 3.0 
	40, 3.0 

	37, 2.9 
	37, 2.9 


	TR
	Span
	10 
	10 

	36, 2.8 
	36, 2.8 

	38, 2.9 
	38, 2.9 

	37, 2.9 
	37, 2.9 


	TR
	Span
	15 
	15 

	36, 2.8 
	36, 2.8 

	40, 3.0 
	40, 3.0 

	39, 3.0 
	39, 3.0 


	TR
	Span
	20 
	20 

	37, 2.8 
	37, 2.8 

	39, 3.0 
	39, 3.0 

	39, 3.0 
	39, 3.0 


	TR
	Span
	30 
	30 

	38, 2.9 
	38, 2.9 

	38, 2.9 
	38, 2.9 

	42, 3.2 
	42, 3.2 


	TR
	Span
	40 
	40 

	37, 2.9 
	37, 2.9 

	38, 2.9 
	38, 2.9 

	39, 3.0 
	39, 3.0 




	 
	4.2. Second Research Approach 
	First, the ANN approach is developed to estimate the percentage of the CVs to the total number of vehicles at the entry and the exit of the tested link; ρin and ρout, respectively. Table 1.2 presents the RRMSE values for estimating the two variables. The results demonstrate that the ANN produces reasonable error values; the errors for estimating the ρin vary between 14 and 25% while the error values are between 10 and 23% for the ρout. 
	After that, the estimated ρ values are used as inputs to the KF approach to estimate the vehicle counts on the tested link. A new approach, named KFNN, is developed based on integrating the KF and the ANN approaches. Remember that the KF approach uses an average one value of ρ in its equations, while the KFNN approach uses real-time values for the ρin and ρout in the KF equations at every estimation step. Table 1.3 shows the RRMSE values for estimating the vehicle counts using the KF and KFNN approaches. Th
	Table 0.2: RRMSE of ρin and ρout at different LMPs. 
	Table
	TBody
	TR
	Span
	LMPs % 
	LMPs % 

	RRMSE (%) 
	RRMSE (%) 


	TR
	Span
	ρin 
	ρin 

	ρout 
	ρout 


	TR
	Span
	10 
	10 

	14 
	14 

	19 
	19 


	TR
	Span
	20 
	20 

	18 
	18 

	23 
	23 


	TR
	Span
	30 
	30 

	22 
	22 

	22 
	22 


	TR
	Span
	40 
	40 

	25 
	25 

	21 
	21 


	TR
	Span
	50 
	50 

	25 
	25 

	19 
	19 


	TR
	Span
	60 
	60 

	24 
	24 

	16 
	16 


	TR
	Span
	70 
	70 

	24 
	24 

	14 
	14 


	TR
	Span
	80 
	80 

	25 
	25 

	12 
	12 


	TR
	Span
	90 
	90 

	24 
	24 

	10 
	10 




	 
	Table 0.3: RRMSE of KF and KFNN approaches at different LMPs 
	Table
	TBody
	TR
	Span
	LMPs % 
	LMPs % 

	RRMSE (%) 
	RRMSE (%) 


	TR
	Span
	KF 
	KF 

	KFNN 
	KFNN 


	TR
	Span
	10 
	10 

	36 
	36 

	64 
	64 


	TR
	Span
	20 
	20 

	37 
	37 

	50 
	50 


	TR
	Span
	30 
	30 

	38 
	38 

	52 
	52 


	TR
	Span
	40 
	40 

	37 
	37 

	54 
	54 


	TR
	Span
	50 
	50 

	37 
	37 

	58 
	58 


	TR
	Span
	60 
	60 

	31 
	31 

	59 
	59 


	TR
	Span
	70 
	70 

	26 
	26 

	57 
	57 


	TR
	Span
	80 
	80 

	23 
	23 

	52 
	52 


	TR
	Span
	90 
	90 

	20 
	20 

	35 
	35 




	 
	4.3. Third Research Approach 
	This section utilizes the three data-driven approaches to estimate the number of vehicles traversing the tested link. CV data alone are used to train and build the three approaches; camera data are not required. 
	First, different neighbors (k) are tested to calibrate and train the k-NN approach, as shown in 
	First, different neighbors (k) are tested to calibrate and train the k-NN approach, as shown in 
	Table 0.4
	Table 0.4

	 The optimal k was found to be 14, with an RRMSE of 18.47%. 

	After calibrating the data-driven estimation approaches, external data are used to test and evaluate the estimation approaches’ performance. 
	After calibrating the data-driven estimation approaches, external data are used to test and evaluate the estimation approaches’ performance. 
	Table 0.5
	Table 0.5

	 presents the RRMSE and RMSE values using the three data-driven estimation approaches: ANN, k-NN, and RF. The results demonstrate that the ANN outperforms the k-NN and the RF for all LMP scenarios. 

	Next, the we compare the performance of the model-driven approaches (KF, AKF, and PF) and the data-driven approaches (ANN, k-NN, and RF) for the application of the traffic stream density. 
	Next, the we compare the performance of the model-driven approaches (KF, AKF, and PF) and the data-driven approaches (ANN, k-NN, and RF) for the application of the traffic stream density. 
	Table 0.6
	Table 0.6

	 summarizes the RRMSE and RMSE values using the six estimation approaches. The table demonstrates that the ANN approach produces the most accurate estimates compared to other approaches. However, it is worth mentioning the difficulties in applying this approach in the field due to the huge amount of data needed to train and build the ANN approach, especially for a large network (e.g., Los Angeles, CA). Moreover, sudden changes in traffic behaviors (e.g., incidents) would not always ensure accurate estimates

	Table 0.4: RRMSE of k-NN approach using different k values 
	Table
	TBody
	TR
	Span
	k 
	k 

	RRMSE (%) 
	RRMSE (%) 


	TR
	Span
	1 
	1 

	24.63 
	24.63 


	TR
	Span
	2 
	2 

	21.63 
	21.63 


	TR
	Span
	3 
	3 

	20.47 
	20.47 


	TR
	Span
	4 
	4 

	19.91 
	19.91 


	TR
	Span
	5 
	5 

	19.49 
	19.49 


	TR
	Span
	6 
	6 

	19.27 
	19.27 


	TR
	Span
	7 
	7 

	19.07 
	19.07 


	TR
	Span
	8 
	8 

	18.88 
	18.88 


	TR
	Span
	9 
	9 

	18.81 
	18.81 


	TR
	Span
	10 
	10 

	18.68 
	18.68 


	TR
	Span
	11 
	11 

	18.54 
	18.54 


	TR
	Span
	12 
	12 

	18.58 
	18.58 


	TR
	Span
	13 
	13 

	18.48 
	18.48 


	TR
	Span
	14 
	14 

	18.47 
	18.47 


	TR
	Span
	15 
	15 

	18.47 
	18.47 




	 
	Table 0.5: RRMSE and RMSE values using data-driven approaches 
	Table
	TBody
	TR
	Span
	LMPs % 
	LMPs % 

	RRMSE (%), RMSE (veh) 
	RRMSE (%), RMSE (veh) 


	TR
	Span
	ANN 
	ANN 

	k-NN 
	k-NN 

	RF 
	RF 


	TR
	Span
	1 
	1 

	27, 2.1 
	27, 2.1 

	40, 3.1 
	40, 3.1 

	42, 3.2 
	42, 3.2 


	TR
	Span
	3 
	3 

	29, 2.2 
	29, 2.2 

	37, 2.8 
	37, 2.8 

	42, 3.2 
	42, 3.2 


	TR
	Span
	5 
	5 

	29, 2.2 
	29, 2.2 

	37, 2.8 
	37, 2.8 

	38, 2.8 
	38, 2.8 


	TR
	Span
	8 
	8 

	28, 2.1 
	28, 2.1 

	36, 2.7 
	36, 2.7 

	38, 2.8 
	38, 2.8 


	TR
	Span
	10 
	10 

	27, 2.1 
	27, 2.1 

	35, 2.8 
	35, 2.8 

	38, 2.8 
	38, 2.8 


	TR
	Span
	15 
	15 

	25, 1.9 
	25, 1.9 

	33, 2.4 
	33, 2.4 

	36, 2.7 
	36, 2.7 


	TR
	Span
	20 
	20 

	24, 1.8 
	24, 1.8 

	33, 2.4 
	33, 2.4 

	36, 2.7 
	36, 2.7 


	TR
	Span
	30 
	30 

	22, 1.7 
	22, 1.7 

	30, 2.3 
	30, 2.3 

	34, 2.6 
	34, 2.6 


	TR
	Span
	40 
	40 

	20, 1.5 
	20, 1.5 

	27, 2.1 
	27, 2.1 

	30, 2.3 
	30, 2.3 


	TR
	Span
	50 
	50 

	17, 1.3 
	17, 1.3 

	24, 1.8 
	24, 1.8 

	26, 2.0 
	26, 2.0 


	TR
	Span
	60 
	60 

	14, 1.1 
	14, 1.1 

	22, 1.6 
	22, 1.6 

	23, 1.7 
	23, 1.7 


	TR
	Span
	70 
	70 

	11, 0.9 
	11, 0.9 

	20, 1.5 
	20, 1.5 

	21, 1.6 
	21, 1.6 


	TR
	Span
	80 
	80 

	9, 0.7 
	9, 0.7 

	18, 1.4 
	18, 1.4 

	19, 1.5 
	19, 1.5 


	TR
	Span
	90 
	90 

	8, 0.6 
	8, 0.6 

	17, 1.3 
	17, 1.3 

	17, 1.3 
	17, 1.3 




	 
	Table 0.6: RRMSE and RMSE values using model- and data-driven approaches 
	Table
	TBody
	TR
	Span
	LMPs % 
	LMPs % 

	Model-Driven Approaches 
	Model-Driven Approaches 

	Data-Driven Approaches 
	Data-Driven Approaches 


	TR
	Span
	KF 
	KF 

	AKF 
	AKF 

	PF 
	PF 

	ANN 
	ANN 

	k-NN 
	k-NN 

	RF 
	RF 


	TR
	Span
	1 
	1 

	44, 3.2 
	44, 3.2 

	58, 4.3 
	58, 4.3 

	37, 2.8 
	37, 2.8 

	27, 2.1 
	27, 2.1 

	40, 3.1 
	40, 3.1 

	42, 3.2 
	42, 3.2 


	TR
	Span
	3 
	3 

	39, 3.0 
	39, 3.0 

	48, 3.6 
	48, 3.6 

	39, 3.0 
	39, 3.0 

	29, 2.2 
	29, 2.2 

	37, 2.8 
	37, 2.8 

	42, 3.2 
	42, 3.2 


	TR
	Span
	5 
	5 

	37, 2.8 
	37, 2.8 

	44, 3.2 
	44, 3.2 

	38, 2.9 
	38, 2.9 

	29, 2.2 
	29, 2.2 

	37, 2.8 
	37, 2.8 

	38, 2.8 
	38, 2.8 


	TR
	Span
	8 
	8 

	36, 2.8 
	36, 2.8 

	40, 3.0 
	40, 3.0 

	37, 2.9 
	37, 2.9 

	28, 2.1 
	28, 2.1 

	36, 2.7 
	36, 2.7 

	38, 2.8 
	38, 2.8 


	TR
	Span
	10 
	10 

	36, 2.8 
	36, 2.8 

	38, 2.9 
	38, 2.9 

	37, 2.9 
	37, 2.9 

	27, 2.1 
	27, 2.1 

	35, 2.8 
	35, 2.8 

	38, 2.8 
	38, 2.8 


	TR
	Span
	15 
	15 

	36, 2.8 
	36, 2.8 

	40, 3.0 
	40, 3.0 

	39, 3.0 
	39, 3.0 

	25, 1.9 
	25, 1.9 

	33, 2.4 
	33, 2.4 

	36, 2.7 
	36, 2.7 


	TR
	Span
	20 
	20 

	37, 2.8 
	37, 2.8 

	39, 3.0 
	39, 3.0 

	39, 3.0 
	39, 3.0 

	24, 1.8 
	24, 1.8 

	33, 2.4 
	33, 2.4 

	36, 2.7 
	36, 2.7 


	TR
	Span
	30 
	30 

	38, 2.9 
	38, 2.9 

	38, 2.9 
	38, 2.9 

	42, 3.2 
	42, 3.2 

	22, 1.7 
	22, 1.7 

	30, 2.3 
	30, 2.3 

	34, 2.6 
	34, 2.6 


	TR
	Span
	40 
	40 

	37, 2.9 
	37, 2.9 

	38, 2.9 
	38, 2.9 

	39, 3.0 
	39, 3.0 

	20, 1.5 
	20, 1.5 

	27, 2.1 
	27, 2.1 

	30, 2.3 
	30, 2.3 


	TR
	Span
	50 
	50 

	37, 2.8 
	37, 2.8 

	38, 2.9 
	38, 2.9 

	37, 2.8 
	37, 2.8 

	17, 1.3 
	17, 1.3 

	24, 1.8 
	24, 1.8 

	26, 2.0 
	26, 2.0 


	TR
	Span
	60 
	60 

	31, 2.4 
	31, 2.4 

	38, 2.9 
	38, 2.9 

	31, 2.4 
	31, 2.4 

	14, 1.1 
	14, 1.1 

	22, 1.6 
	22, 1.6 

	23, 1.7 
	23, 1.7 


	TR
	Span
	70 
	70 

	26, 2.0 
	26, 2.0 

	32, 2.5 
	32, 2.5 

	25, 1.9 
	25, 1.9 

	11, 0.9 
	11, 0.9 

	20, 1.5 
	20, 1.5 

	21, 1.6 
	21, 1.6 


	TR
	Span
	80 
	80 

	23, 1.8 
	23, 1.8 

	31, 2.4 
	31, 2.4 

	20, 1.5 
	20, 1.5 

	9, 0.7 
	9, 0.7 

	18, 1.4 
	18, 1.4 

	19, 1.5 
	19, 1.5 


	TR
	Span
	90 
	90 

	20, 1.5 
	20, 1.5 

	30, 2.2 
	30, 2.2 

	14, 1.1 
	14, 1.1 

	8, 0.6 
	8, 0.6 

	17, 1.3 
	17, 1.3 

	17, 1.3 
	17, 1.3 




	 
	5. Summary and Conclusions 
	This work presents three research approaches to estimate the number of vehicles along signalized links. The first research approach presents three model-driven approaches (KF, AKF, and PF) using a single average ρ in the state-space equations. This first approach relies solely on CV data. The second research approach develops the ANN approach to estimate two ρ variables, ρin and ρout, to be used in the state-space equations. Fused CV and camera data are utilized to build the ANN approach. After that, the se
	 The use of CV data is sufficient to provide accurate vehicle count estimates. 
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	 Using two predicted variable values in the state-space equations is not recommended, as it may produce undesired large errors in the state equation. It was found that the ANN approach may over-estimate the first variable and under-estimate the second variable or vice versa for the same estimation step. Consequently, the second research approach is not recommended. 
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	 The ANN is the most accurate estimation approach. However, it is also necessary to take into consideration the huge amount of data needed to train and build the ANN approach, the long computational time needed to build the ANN, and the constraints on keeping the traffic behavior the same as the behavior in the training data set. Based on these factors, the use of the KF approach is highly recommended for the application of traffic density due to its simplicity and applicability in the field.
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